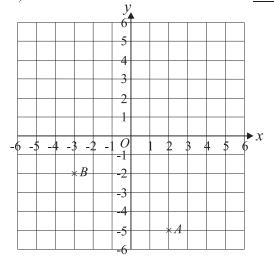
Algebra 1F Assessment

Clip Grade Title of clip Question(s)	Marked out of	Score	%
71Algebraic conventions	8		
8 1 Coordinates 3	6		
332 Simplifying - Addition and Subtraction4 - 6	12		
342 Simplifying - Multiplication	10		
35 2 Simplifying - Division	8		
36 2 Function Machines	4		
37 2 Generating a Sequence - Term to Term 14 - 15	6		
93 Expanding Brackets	8		
94 Simple Factorisation	10		
953 Substitution	16		
96 3 Straight Line Graphs	8		
97 3 The Gradient of a Line	6		
98 26	6		
99 Sketching Functions	2		
100 Solving Equations using Flowcharts 28	4		
101 Subject of a Formula using Flowcharts 29	2		
102 3 Generating a Sequence from the <i>n</i> th Term 30	4		
103 3 Finding the <i>n</i> th Term	2		
1043 Special Sequences	3		

TOTAL *Out of 125* SCORE

Final % Percentage


- 1) Write the following in their simplest forms using algebraic notation:
 - a) $9 \times x = _{1}$
 - b) $x \times 7 =$ _____
 - c) $x \div 5 =$ _____
 - d) x + x + x + x =_____
- 2) Write the following using algebraic notation:
 - a) I think of a number, multiply it by 3 and then subtract 2.

_____2

b) I think of a number, add 2 and then multiply the result by 6.

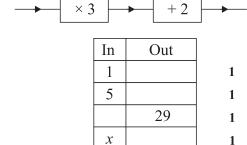
- 3) a) Write down the coordinates of A.
 - b) Write down the coordinates of *B*.

- c) Plot the point (-5, 3) and label it C. 2
- 4) Simplify the following:
 - a) 2x + 5x =_____
 - b) 7y 4y =_____
 - c) $3x + x = _{1}$
 - d) $2x 8x + 3x = _____$
- 5) Simplify the following:
 - a) $4xy^2 + 2xy^2 = _____$
 - b) $2x^2y^3 7x^2y^3 + 6x^2y^3 =$ _____

- 6) Simplify the following:
 - a) 2x + 5y + 4x + 3y =_____

 - c) 3x 5y x 6y =_____

2


- 7) Simplify the following:
 - a) $x \times x \times x =$ ______1
 - b) $x^2 \times x^5 =$ ______
 - c) $2x \times 4x = _{1}$

 - e) $x \times 2x^3 \times 4x^2 =$ _______
- 8) Simplify the following:
 - a) $7 \times 4t = _{1}$
 - b) $3xy^2 \times 4x^3y^5 =$ ______
- 9) Simplify the following:

 - b) $(x^5)^4 =$
 - c) $(2x^4)^3 = _{1}$
- 10) Simplify the following:
 - a) $x^5 \div x^3 = 1$
- 11) Simplify the following:
 - a) $12x^5 \div 3x =$
 - b) $\frac{14x^7}{2x^3} = _{1}$
- 12) Simplify the following:

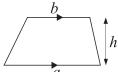
 - b) $\frac{12(2x+3)^6}{2(2x+3)^4} =$

13) Complete the table for this function machine:

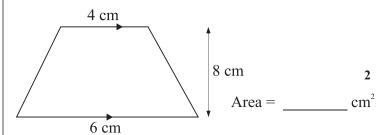
- 14) Write the first three terms of each sequence using the following rules:
 - a) Start at 4 and add 5. ____, ____, ____ 2
 - b) Start at 1 and subtract 7. ____, ____ 2
- 15) Find the term to term rule for these sequences:
 - a) 7, 9.5, 12, 14.5, 17

1

- 16) Expand the following:
 - a) 2(4x-3) =______
 - b) x(x+7) =______
- 17) Factorise fully:

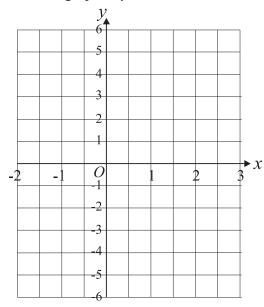

 - d) $3x^2 + 2x =$ _______
- 18) If x = 6, find the value of:

 - b) $x^2 = _{1}$
 - c) 5 + 4x = 1
 - d) 3x 20 =

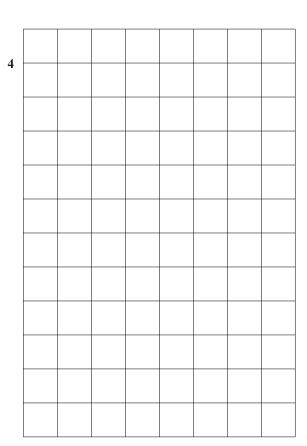

- 19) If x = 5 and y = -3, find the value of:
 - a) 2x + y = 2
- 20) The cost, £C, of hiring a carpet cleaner for d days is given by C = 5d + 10. Bill hires the cleaner for 6 days.

How much does it cost him? ______

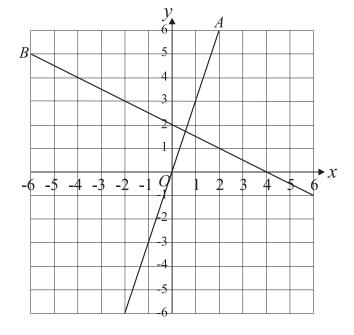
21) The area of a trapezium is given by $A = \frac{1}{2}(a+b)h$


Find the area of this trapezium

22) a) Complete the table of values for y = 2x - 1

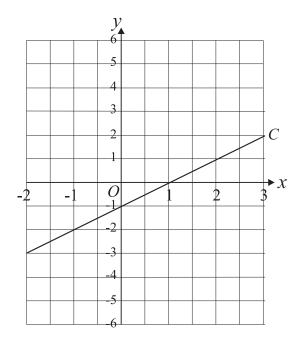

x	-2	-1	0	1	2	3
у		-3				5

b) Draw the graph of y = 2x - 1 2



2

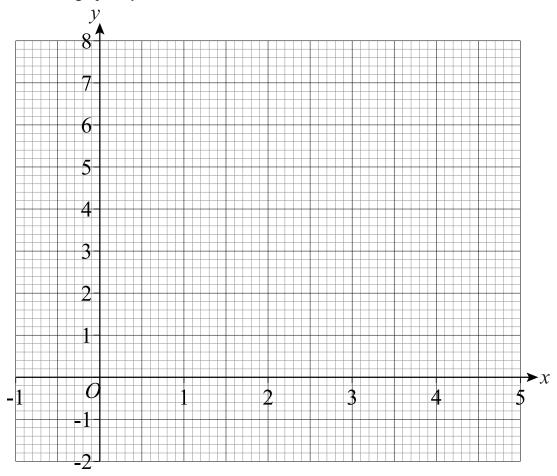
23) On the grid, draw the graph of 2x + y = 5 for values of x between -2 and 3.



- 24) Find the gradients of lines A and B.
 - a) Gradient of A is _____ 2
 - b) Gradient of *B* is _____

25) Find the gradient of line C.

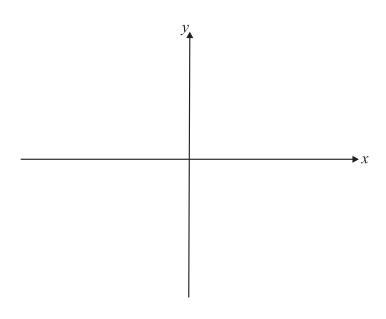
Gradient of C is _____ 2



26) a) Complete the table of values for the equation $y = x^2 - 4x + 3$

х	-1	0	1	2	3	4	5
у				-1		3	

2


b) Draw the graph of $y = x^2 - 4x + 3$

c) Using your graph, solve $x^2 - 4x + 3 = 2$

$$x =$$
_____ or $x =$ ______

27) On the axes below, sketch the graph of $y = x^2 - 4$

28) Using a flowchart, or otherwise, solve the following equations:

a)
$$2(4x-1)=26$$

$$\chi = \underline{\hspace{1cm}}_2$$

b)
$$4(\frac{x}{5} + 3) = 32$$

$$x = 2$$

29) Rearrange the formula $w = 5(\frac{x}{2} - y)$ to make *x* the subject.

$$x = \underline{\hspace{1cm}}_2$$

- 30) a) The *n*th term of a number sequence is 5n-3 Write down the 7th term of the sequence _____
 - b) The *n*th term of a number sequence is $3n^2 4$ Write down the 10th term of the sequence ______ 2
- 31) Here are the first five terms of an arithmetic sequence:

Find an expression for the *n*th term of this sequence.

32) Here are the first five terms of a number sequence:

What is the term to term rule for this sequence?

33) The *n*th term for triangular numbers is $\frac{n(n+1)}{2}$ Use this to work out the 6th triangular number

Use this to work out the 6th triangular number. _____