Geometry 3F Assessment

THE ANSWERS

Foundation Level

All questions apart from qu 13

Clip Grade	Title of clip	Question(s)	Marked out of	Score	%
1655	Loci	1	5		
1665	Congruent Triangles	2 - 3	5		
1675	Sectors of a Circle	4	6		
1685	Trigonometry	5 - 7	23		
1695	Spheres	8	6		
1705	Pyramids	9	3		
1715	Cones	10 - 11	11		
1725	Frustums	12	5		
1735	Exact Trigonometric Values	13	3		
1745	Introduction to Vectors	14	6		

Out of 73	TOTAL	
Out 0j 73	SCORE	

Final	0/
Percentage	70

1) This is a picture of a garden with a path running alongside. Three posts are in the garden at A, B and C.

Treasure is buried in the garden so that it is: between 4 m and 6 m from A, closer to B than to C, more than 4 m from the path.

Using ruler and compasses only, shade the area of the garden where the treasure might be buried. You **must** show all your construction arcs.

© MathsWatch Geometry 3F Assessment Page 2

None of the above because they are not congruent.

3) Prove that triangle ABC is congruent to triangle CDA. 3

Angle DAC = angle BCA (alternate angles)

Angle BAC = angle DCA (alternate angles)

Angle ABC = 180 - angle BAC - angle BCA

Angle CDA = 180 - angle DCA - angle DAC

Hence angle ABC = angle CDA

AD = CB (given)

Triangle ABC is congruent to triangle CDA (ASA)

a) Find the area of the sector. Give your answer to 1 decimal place.

72.6 cm² 3

b) Find the perimeter of the sector. Give your answer to 1 decimal place.

34.2 __ cm __ 3

5) Find the lengths of the missing sides and angles. Give your answers to 1 decimal place.

- a) $w = _{\underline{7.4}}$ cm
- b) x = 52.1 ° 3
- c) y = 16.4 cm 3
- d) z = 33.7 °

6)

In the diagram, $\cos x = \frac{1}{3}$

Find the value of $\sin y$, showing all your working in the space, below.

$$\cos x = \frac{BD}{39} = \frac{1}{3}$$

$$BD = 13$$

Using Pythagoras in BCD, $13^2 = 5^2 + BC^2$

$$BC^{2} = 169 - 25$$
$$= 144$$
$$BC = 12$$
$$\sin y = \frac{12}{13}$$

7) The diagram shows the net of a square-based pyramid.

The area of the square base is 25 cm².

Work out the area of one triangular face. 5 You must show all your working.

Area of square base is 25

$$AB = 5$$

$$Tan 70 = \frac{CD}{AD}$$

$$Tan 70 = \frac{CD}{2.5}$$

$$CD = 2.5 \times \tan 70$$

$$CD = 6.869$$

$$Area = 0.5 \times 5 \times 6.869$$

Area of one triangular face = 17.2 cm^2

8) a) Work out the volume of the sphere, giving your answer to 1 decimal place.

$$Volume = \underline{2144.7} \text{ cm}^3$$

b) Work out the surface area of the sphere, giving your answer to 1 decimal place.

Surface area =
$$804.2$$
 cm²

9) The pyramid has a rectangular base and E is directly above A.

Find the volume of the pyramid.

Volume =
$$\frac{1}{3}$$
 × base area × height

$$Volume = \underline{140} \text{ cm}^3 \qquad 3$$

- 10) For the cone, shown, find
 - a) The volume.

Volume =
$$\frac{1}{3}\pi r^2 h$$

Curved surface area = πrl

Volume =
$$314.2$$
 cm³

b) The **total** surface area.

Total surface area =
$$282.7$$
 cm² 3

11) The sector AOB of a circle is shown.

Volume = $\frac{1}{3}\pi r^2 h$

The length of its arc is 16π cm.

The sector is folded so that the straight edges meet and form a cone.

a) Calculate the radius of the base of the cone.

b) The volume of the cone is 1024π cm³.

Work out the perpendicular height of the cone.

12) The frustum, shown, is made by removing a small cone from a similar large cone.

Work out the volume of the frustum. Give your answer to 1 decimal place.

Volume of the frustum = 994.8 cm³

13) Write down the **exact** value of (do **not** use a calculator for this question):

- a) cos 30° <u>0.5</u>
- b) sin 45° ____ 1
- c) tan 30° ___1 ___ 1

14) Here are two column vectors $\mathbf{f} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$ $\mathbf{g} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ Work out

a)
$$2\mathbf{g} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$$
 2

b)
$$\mathbf{f} + \mathbf{g} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
 2

c)
$$3\mathbf{g} - \mathbf{f} = \begin{pmatrix} 14 \\ -2 \end{pmatrix}$$
 2